Inactivation and stimulation of the frontal pursuit area change pursuit metrics without affecting pursuit target selection.
نویسندگان
چکیده
The frontal pursuit area (FPA) lies posterior to the frontal eye fields in the frontal cortex and contains neurons that are directionally selective for pursuit eye movements. Lesions of the FPA (alternately called "FEFsem") cause deficits in pursuit acceleration and velocity, which are largest for movements directed toward the lesioned side. Conversely, stimulation of the FPA evokes pursuit from fixation and increases the gain of the pursuit response. On the basis of these properties, it has been hypothesized that the FPA could underlie the selection of pursuit direction. To test this possibility, we manipulated FPA activity and measured the effect on target selection behavior in rhesus monkeys. First, we unilaterally inactivated the FPA with the GABA agonist muscimol. We then measured the monkeys' performance on a pursuit-choice task. Second, we applied microstimulation unilaterally to the FPA during pursuit initiation while monkeys performed the same pursuit-choice task. Both of these manipulations produced significant effects on pursuit metrics; the inactivation decreased pursuit velocity and acceleration, and microstimulation evoked pursuit directly. Despite these changes, both manipulations failed to significantly alter choice behavior. These results show that FPA activity is not necessary for pursuit target selection.
منابع مشابه
Target Selection by the Frontal Cortex during Coordinated Saccadic and Smooth Pursuit Eye Movements
Oculomotor tracking of moving objects is an important component of visually based cognition and planning. Such tracking is achieved by a combination of saccades and smooth-pursuit eye movements. In particular, the saccadic and smooth-pursuit systems interact to often choose the same target, and to maximize its visibility through time. How do multiple brain regions interact, including frontal co...
متن کاملNeural activity in the frontal pursuit area does not underlie pursuit target selection
The frontal pursuit area (FPA) contains neurons that are directionally selective for pursuit eye-movements. We found that FPA neurons discriminate target from distracter too late to account for pursuit directional selection. Rather, the timing of neuronal discrimination is linked to pursuit onset, suggesting a role in motor execution. We also found buildup of activity of FPA neurons prior to pu...
متن کاملTranscranial magnetic stimulation of frontal oculomotor regions during smooth pursuit.
Both the frontal eye fields (FEFs) and supplementary eye fields (SEFs) are known to be involved in smooth pursuit eye movements. It has been shown recently that stimulation of the smooth-pursuit area of the FEF [frontal pursuit area (FPA)] in monkey increases the pursuit response to unexpected changes in target motion during pursuit. In the current study, we applied transcranial magnetic stimul...
متن کاملThe role of the frontal pursuit area in learning in smooth pursuit eye movements.
The frontal pursuit area (FPA) in the cerebral cortex is part of the circuit for smooth pursuit eye movements. The present paper asks whether the FPA is upstream, downstream, or at the site of learning in pursuit eye movements. Learning was induced by having monkeys repeatedly pursue targets that moved at one speed for 150 msec before changing speed. Single-cell recording showed no consistent c...
متن کاملActivity of fixation neurons in the monkey frontal eye field during smooth pursuit eye movements.
We recorded the activity of fixation neurons in the frontal eye field (FEF) in trained monkeys and analyzed their activity during smooth pursuit eye movements. Fixation neurons were densely located in the area of the FEF in the caudal part of the arcuate gyrus facing the inferior arcuate sulcus where focal electrical stimulation suppressed the generation of saccades and smooth pursuit in bilate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 1 شماره
صفحات -
تاریخ انتشار 2011